Database design concerns an Update
Dave Edelman
dedelman at iname.com
Sun Oct 28 09:18:43 EDT 2012
Some updates from the front lines.
I have changed three things. I increased the size of the max_allowed_packet
value from 1M to 64M; I built the clients without debug enabled; and I took
a good look at the data I inserted before I killed the original activity.
With the rasqlinsert parameters -m srcid matrix and -s ltime dur srcid saddr
daddr bytes and a filter of - ip I was aggregating too aggressively and had
lost much of the material that I really needed. I also did a bit of thinking
about a problem that I encounter with data that are collected over a long
time span. In three years, we've closed some data centers, opened others,
moved to significant amounts of virtualization and have very effectively
disconnected the IP addresses in the Argus records from the current reality.
I do have the glue to reconnect most, if not all of this but it is not in
those records.
With that last thought in mind, I tried an experiment of running ralabel
against the records and piping that into rasqlinsert. I guess that the
biggest benefit is that you are guaranteed not to overrun the database, even
without optimizations. The insert rate could be measured in furlongs per
fortnight J
I abandoned that idea and reset the insert process parameters and filter to
something that provided what I actually need.
-m srcid matrix proto
-s ltime dur srcid saddr daddr bytes proto sco dco
- not icmp and not udp
Before anyone yells, some explanation is in order. This specific dataset is
not typical and I have other datasets that I will deal with in different
ways. I am responsible for the broken parts of a very large network. The
parts that are not broken always seem to belong to other people L Broken in
the sense of both not working and something evil this way comes. In round
numbers we have 30,000 routing nodes and about 6.02 * 10^23 users give or
take a few. We have a clearly defined DFZ (Default Free Zone) that has full
routing tables and the entire network is isolated from the Internet with
controlled access through formal authenticating proxy devices. Throughout
our DFZ we intentionally inject default routes which point to a set of
sinkholes. The sinkholes send NetFlow data to the mother ship and then drop
the traffic. It is really not much more than an active darknet detection
mechanism. Anything that gets to the sinkhole is misconfigured, broken, or
malicious and always requires some sort of attention. The sinkhole NetFlow
is really sent to a different system, but by dint of logical explanation,
reason, and significant threats I convinced everyone that I should also get
a copy of the material. This material is the dataset in question.
I never see anything but half-flows, because the sinkhole never talks back.
I know that the destination address is not routable on the network, and I
know that I have had very poor return from ICMP and UDP traffic, so the
folks responsible for the other system handle that stuff. One other bit of
background. My organization is very concerned about even the hint of a
thought of an appearance of communications with a well-defined set of
countries so part of this infrastructure is an EPD (Electro-Political
Device.)
The parameters that I used allow me to insert about one day of historical
data every 6-7 minutes which is very acceptable for the three years of data
that I am loading. I am loading in twelve parallel streams and I haven't
seen any significant degradation in the insertion rate.
Retrieval, even in the midst of this insertion process, is very quick.
I still have to figure out what to do about labels both for the data that
I've processed and new data going forward and I'm always open to
suggestions.
--Dave
From: Dave Edelman [mailto:dedelman at iname.com]
Sent: Saturday, October 27, 2012 2:36 PM
To: 'Carter Bullard'
Cc: 'Argus List'
Subject: RE: [ARGUS] Database design concerns
The source data are contained in files by one hour intervals. Using racount
and filtering for only ip records a typical sample has around 1.8 million
records and the resulting table has around 44,000 rows and takes about 32
minutes of elapsed time to populate.
The command that I used was:
% rasqlinsert -M time 1d -r * -w
mysql://argus@localhost/argus/ipMatrix_%Y_%m_%d -M cache -m srcid matrix -s
ltime dur srcid saddr daddr bytes - ip
Since the source data and the tables are organized by day, I've fired up
five parallel instances of rasqlinsert each doing a month's data by day (
-R ) and I don't see any significant change in the elapsed time to insert a
day's data measured by the difference between SHOW TABLE STATUS's
create_time and update_time. That is just under 950 records a second so I've
just changed the value of max_allowed_packet from 1M to 64M. Once the
current crop are finished, I'll restart the database and fire up a single
set of inserts to get a baseline.
--Dave
From: Carter Bullard [mailto:carter at qosient.com]
Sent: Saturday, October 27, 2012 10:34 AM
To: Dave Edelman
Cc: 'Argus List'
Subject: Re: [ARGUS] Database design concerns
* PGP - S/MIME Signed by an unverified key: 10/27/2012 at 10:34:00 AM
Hey Dave,
Insertion is pretty complex, number of columns, number of keys, argus
data model which dictates the size of the argus records. Pair that with how
fast can the clients read data and prepare the record for insertion, and
what the client is doing, you get a very complex set of contributors to the
insertion rates.
Clients can read around 100-120K records per second, so that is the upper
end.
The standard mysql insertion takes an ASCII string, so rasqlinsert() reads
the
record, processes it, and then when its ready to insert, it prints out the
string you've specified with either the " -s fields " or the
RA_FIELD_SPECIFIER,
to a buffer, and adds a printable version of the binary record, if its
included.
We queue the buffers to another thread, who batches the insertions into the
largest buffer mysql will accept, as long as there are more records, and
then
calls mysql_real_query()'s to insert records. Pretty expensive, but this
the
normal way to do it.
So with a standard argus record but no keys, " -m none ", with a standard
argus records, without say TCP performance, or jitter information, I've
gotten
around 12-14K records per second, but that changes with time, as the table
gets bigger things get slower, and more expensive CPU wise, for a while, and
then it speeds up again.
Now, rasqlinsert() is much more complicated that this, of course. When
using
the " -M cache " option, you are doing flow aggregation, with timed
insertions,
updates and possibly deletions.
In this case, where there are insertions, updates and deletions, the queued
buffers
are bunched together based on query type, into the maximum size buffer
mysql
will accept. As a result, we'll have an interesting mix of insertions, then
updates, then
maybe a series of updates, then insertions, a few deletions, etc.....
With standard flow keys, " -m srcid saddr daddr proto sport dport ", its
8-10K ?
But with a lot of medium and long lived flows, because we're doing
aggregation,
you may see that you can consume 30-40K flows per second, and the database
can keep up, because the eventual database operations reduce to 8-10K ops.
So how did your day's worth pan out for you? How did you run rasqlinsert?
Carter
On Oct 26, 2012, at 11:58 PM, "Dave Edelman" <dedelman at iname.com> wrote:
Carter,
What type of insertion rate are you able to achieve? I just pointed
mysqlinsert at a day's worth of one sensor (changed to -S localhost:562 to
-r *) and it is chugging along. I have spent no time at all tuning the
database (fresh install from source) MyISAM engine, pretty good size server.
Do you have any tips for tuning MySQL for best insertion rates?
--Dave
From: <mailto:argus-info-bounces+dedelman=iname.com at lists.andrew.cmu.edu>
argus-info-bounces+dedelman=iname.com at lists.andrew.cmu.edu [mailto:argus-
<mailto:info-bounces+dedelman=iname.com at lists.andrew.cmu.edu>
info-bounces+dedelman=iname.com at lists.andrew.cmu.edu] On Behalf Of Carter
Bullard
Sent: Friday, October 26, 2012 11:43 AM
To: Paul Schmehl
Cc: Argus List
Subject: Re: [ARGUS] Database design concerns
> Old - S/MIME Signed by an unverified key: 10/26/2012 at 11:42:33 AM
Hey Paul,
So I thought I'd give you some real data on this type of data strategy.
This is how I use rasqlinsert() and rasql() together to do what you're
describing.
I run rasqlinsert() as a daemon, reading argus data from all my argus
sources.
Currently I have 28 sources, here at QoSient World Headquarters.
A single radium attaches to all the sources, and generates a single stream
of realtime argus data. I run rastream() to write the data to files, and
this
rasqlinsert() to formulate an IP matrix index:
rasqlinsert -M time 1d -S localhost:562 -w
<mysql://root@localhost/ratop/ipMatrix_%25Y_%25m_%25d>
mysql://root@localhost/ratop/ipMatrix_%Y_%m_%d \
-M cache -m srcid matrix -s ltime dur srcid saddr daddr bytes -d -
ip
This has been running for a little over 20 months, and so I have some
decent data to work with.
OK, I'm interested in this address, 208.70.31.236, as I'm looking at live
data, and its something I'm not familiar with. its owned by " Internet
Archive ".
I have no idea why I would be talking to " Internet Archive ", so how long
have I been talking to this IP?
So this is a rasql() call to scan back 365 days, and tell me how long have
I been communicating with this site.
rasql -t -365d -r <mysql://root@localhost/ratop/ipMatrix_%25Y_%25m_%25d>
mysql://root@localhost/ratop/ipMatrix_%Y_%m_%d -M time 1d \
-M sql="saddr = '208.70.31.236' or daddr = '208.70.31.236'"
This will find every daily IP address instance for this address in my
entire repository. So what's going on?
rasql - used to read argus " record "s from database tables
-t -365d - set the start time to be 1 calendar year ago, since I
don't specify a stop time, stop will be " now ".
-r <mysql://root@localhost/ratop/ipMatrix_%25Y_%25m_%25d>
mysql://root@localhost/ratop/ipMatrix_%Y_%m_%d
this sez, use wildcard table names. You have to
specify what the time duration is that creates the names.
-M time 1d - This sez use 1 day to formulate the table names.
-M sql="saddr = '208.70.31.236' or daddr = '208.70.31.236'"
this passes a where clause to the SQL commands
to find the IP addresses of interest.
OK, so how well does it do? This specific query in my system, covering 450
GB of
argus data, which is a small repository, returns 169 records covering the
entire
year. For this respository, there are 365 tables to look at, for instances
of
this IP address. Since I'm interested in how long its been going on, I'll
pipe
the output to ratimerange() to get the result. Lets time it:
thoth:~ carter% time rasql -t -365d -r
<mysql://root@localhost/ratop/ipMatrix_%25Y_%25m_%25d>
mysql://root@localhost/ratop/ipMatrix_%Y_%m_%d -M time 1d \
-M sql="saddr = '208.70.31.236' or daddr = '208.70.31.236'" \
-w - | ratimerange
2012/04/16.15:55:18.645652 - 2012/10/26.09:37:54.977133
real 0m0.816s
user 0m0.054s
sys 0m0.025s
Not bad for covering an entire year of data. This is on a 4 year old Mac
Pro,
with 2x4 core Xeon, with 14GB of memory. So it started, April 16, at
3:55:18.645652 PM.
Next steps are pretty simple ..
If I pipe the output to racluster(), I get this:
thoth:~ carter$ time rasql -t -365d -r
<mysql://root@localhost/ratop/ipMatrix_%25Y_%25m_%25d>
mysql://root@localhost/ratop/ipMatrix_%Y_%m_%d \
-M time 1d -M sql="saddr = '208.70.31.236' or daddr =
'208.70.31.236'" \
-w - | racluster -s stime dur:16 srcid saddr daddr
trans pkts bytes
StartTime Dur SrcId
SrcAddr DstAddr Trans TotPkts TotBytes
2012/04/16.15:55:18.646102 16652556.131783 207.237.36.98
207.237.36.98 208.70.31.236 357 714 110786
2012/04/16.15:55:18.645652 16652556.134256 192.168.0.1
192.168.0.66 208.70.31.236 357 714 110786
2012/04/16.15:55:18.639736 16652556.136862 192.168.0.66
192.168.0.66 208.70.31.236 357 714 110786
real 0m0.846s
user 0m0.058s
sys 0m0.025s
thoth:~ carter$
Here we find the 3 probes that saw the traffic, the end system, the interior
border sensor, and the exterior sensor.
The ipMatrix table has aggregates in them, so we had 169 active days, and a
total of 357 transactions over
the year. Still not sure what it is, so need to look at the primitive data
to figure it out....
OK, so we find out its innocuous, and no big deal, but that didn't take long
at all to find out.
Hope this is useful,
Carter
On Oct 26, 2012, at 6:53 AM, Carter Bullard < <mailto:carter at qosient.com>
carter at qosient.com> wrote:
Hey Paul,
Its all about your forensics data model. You're putting all your data
into a database without a model, and then using the DB to do a lot
of work. Great idea, but for some sites, 120M rows isn't a lot of data.
When you get into the 1.2G rows a day, those queries get 1 or more
additional 0's at the end of your response times. Thats about 20K
records / sec. Just putting the primitive argus data into a mysql table
gets to be tough to do. Now, your column count has to go down to
keep up, and the query taxonomy that the limited flow id's and metrics
( columns) can support goes down.
So we / I approach this by not putting the primitive records into the
database. By building multiple data models in parallel, and putting
those in the database, we can get good performance on a good
Cyber Forensics query taxonomy over Petabytes of data, over periods
of years. These are the targets I think are useful.
So, YES, being able to find all the nodes that X is / has talked to is
really valuable. And, we have methods that can maintain a day based
matrix table in realtime. Its far less expensive that putting every record
in the database.
rasqlinsert -S localhost -m srcid matrix -M cache \
-w <mysql://user@localhost/db/matrix_%25Y_%25m_%25d>
mysql://user@localhost/db/matrix_%Y_%m_%d \
-s srcid stime ltime saddr daddr - ipv4
For some, the matrix is expressed as a CIDR addresses:
-m srcid matrix/24
The resulting table has all the X's <-> Y's, by day. Now you may find
that that granularity doesn't do well for you, but you can adjust that with
the tools we provide, using a " -M hard time 1h " like option and adding
the " stime " to the key, you get hourly granularity in daily tables.
Adding
other metrics can be useful, but we always put a full argus record in each
row, so we get all the metrics that can be useful, without beating up the
DB.
The idea is that this table can be done in parallel with other data models
that are also very useful.
On the web site, we talk about also having an IP address inventory, that
you can have going, concurrently, in real time:
rasqlinsert -S localhost -M rmon -m srcid smac saddr -M cache \
-w <mysql://user@localhost/db/addrs_%25Y_%25m_%25d>
mysql://user@localhost/db/addrs_%Y_%m_%d \
-s srcid stime ltime smac saddr - ipv4
Now this table provides you with ethernet / IP pairs, which will provide you
with some topology information on where X came from. This table has a
bonus, it will tell you whether your IP came from a router / switch,
or came from an end system, as you can find all the MAC addresses in your
infrastructure, and how many IP's that MAC addr is supporting. Helps you
to find VM's, wireless access points, and spoofing sources.
With all queries in these data models returning start and end times,
you should be able to get to the original argus records ( primitive data ),
that are
being stored in time based files, very quickly. But you should be able to
query other data models, bounded in some relevant time based queries, or
these
same models in other sites, to do some really good forensics work, evenly
interactively.
So when you get an event that is interesting involving some odd ball X at
time T, you
generally want to know who X was talking to at time (T - Tc) - (T + Tc),
where c is like
60-300 seconds, but the next question is almost always, when did I first see
X, always
going back at least 1 month, but a year is much better. And then, its
always valuable
to know when did X first start talking to the specific Y's that are involved
in the current
event, and who were those Y's talking to.
The whole point is to find the initial penetration event, and attempt to
characterize
the stepping stones ( Markov chain ), to tell you how bad it is.
Generally, these types of cross table queries, when these tables are already
built,
are much faster than your response times. The important fields are already
indexed,
because they are keys. ( -m fields specify the DB keys ).
So what kind of data models do you think may be useful ? That would be an
interesting conversation, I believe.
Carter
On Oct 26, 2012, at 12:48 AM, Paul Schmehl <
<mailto:pschmehl_lists at tx.rr.com> pschmehl_lists at tx.rr.com> wrote:
--On October 26, 2012 12:21:58 AM -0400 Carter Bullard <
<mailto:carter at qosient.com> carter at qosient.com> wrote:
Hey Paul,
All the rasql* tools know how to cross day boundaries to find data, so it
works well for ra*. But, that doesn't mean that there aren't better ways
of doing things.
No reason, ..., nobody has asked for column indexing with rasql*
programs. Probably because it does slow down record insertion. You have
decided to not insert the binary argus record into the database, so you
don't need any of the rasql* tools to do your database operations.
What kind of queries are you doing ?
Typically the question we're trying to answer is something like this:
Show me what saddr's connected to unique daddr on port num between one time
and another.
Specific example would be for Torpig.
Which IPs connected to 8.8.8.8 on port 53 between 8AM and 12 Noon yesterday.
We might occasionally want to search for all connections for one host over
several days.
The problem we're trying to solve is that searches on the data using ra take
a very long time. We're archiving the logs in four hour increments,
bzipped, and a search of one four hour period will take 20 minutes or so. A
search through a whole day's logs (6) would take several hours. A typical
day is between 50 and 75 GB compressed - 90 to 120GB uncompressed.
By putting the critical information into a database we can locate the
connections more quickly, then use ra with the -t switch to hopefully find
the data more quickly.
A typical query would be something like this:
SELECT * from table where saddr between x and y and daddr=z and stime
between z and a.
I just ran that query and it took 25 seconds. Dropping the saddr range and
just searching for all connections to that destination dropped the time to 1
second. That same query on a four hour argus file would taken 20 minutes or
so.
Paul Schmehl, Senior Infosec Analyst
As if it wasn't already obvious, my opinions
are my own and not those of my employer.
*******************************************
"It is as useless to argue with those who have
renounced the use of reason as to administer
medication to the dead." Thomas Jefferson
"There are some ideas so wrong that only a very
intelligent person could believe in them." George Orwell
* Carter Bullard < <mailto:carter at qosient.com> carter at qosient.com>
* Issuer: "VeriSign - Unverified
* Carter Bullard <carter at qosient.com>
* Issuer: "VeriSign - Unverified
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://pairlist1.pair.net/pipermail/argus/attachments/20121028/3a20a0d1/attachment.html>
More information about the argus
mailing list